
Parallel and Distributed Computing
(B4B36PDV)

Matěj Kafka, Michal Jakob

kafkamat@fel.cvut.cz

https://pdv.pages.fel.cvut.cz

https://pdv.pages.fel.cvut.cz/

Parallel and Distributed Computing
What is the difference?

Parallel computing
Computing in

distributed systems

Parallel and Distributed Computing
What is the difference?

Utilize multiple computation
units to get the result faster.

"single computer"
(shared memory)

Parallel computing
Computing in

distributed systems

Utilize a network of separate
computers to either get the
result faster, or more reliably.

"multiple computers"
(message passing)

Faster solution More robust system

PARALLEL COMPUTING
Making programs run faster using parallelization

Motivation
End of frequency scaling

Source: https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data

Contemporary hardware

Threadripper PRO 7995WX

• 96 cores (192 hyperthreads)
• 12.6 TFLOPS

NVIDIA RTX 4090

• 16384 shader units
• 178.8 TFLOPS

Contemporary laptop hardware
Apple MacBook Pro (2024), 10 CPU cores, 1280 shader units

Contemporary laptop hardware
Surface Laptop Studio 2, 14 CPU cores, 20 threads, 3072 shader units

Source: https://www.anandtech.com/

https://www.anandtech.com/show/17601/intel-core-i9-13900k-and-i5-13600k-review/2

Compilers will not help us…

• For single-threaded programs, compilers work hard
to make our programs fast (and tend to be good at
it).

• Contemporary compilers will not magically make
our programs multi-threaded.

• Libraries can often help, but we still need to know
where and how we want to run things in parallel.

• Parallelism does not easily compose.

…yet

DEMO 1: PARALLEL FOREACH
CPU-bound computation

DEMO 2: STUDENT SUM
Brain-bound computation?

Speedup is limited by serialized execution
Amdahl's Law

https://www.desmos.com/calculator/7hday0d3ne

𝑆 =
1

𝑠 +
1 − 𝑠
𝑃

S = speedup
s = serial part
P = core count

https://www.desmos.com/calculator/7hday0d3ne

ORGANIZATION
B4B36PDV

Who are we?

Lecturers

Tutors

Matěj Kafka Michal Jakob

Max HollmannJakub DupákPeter Macejko Adéla Kubíková David MilecJáchym Herynek

What will we use?

• C++20, OpenMP

• Linux / Mac / WSL

• JetBrains CLion / VS Code

• Knowledge from
APO, OSY and ALG

Parallel computing Distributed computing

• Java 17

• Linux / Mac / Windows

• IntelliJ IDEA

• Knowledge from
LGR and OSY

How do we evaluate?

• Assignments (50%)

• 7 small assignments

• 2 large assignments

• Implementation exam (20%)

• Theoretical exam (30%)

You need to achieve at least 50% from each part to pass.

How to succeed in PDV?

• Review PRP, APO and OSY. It will make the parallel part
much easier.

• C knowledge, pipelining, caches, threads, mutexes,
race conditions

• Learn to combine high-level algorithmic decomposition
with low-level understanding of hardware.

• Think while debugging. Randomly throwing code at the
wall rarely fixes multithreading issues.

• Use "AI" chatbots wisely.

QUICK REVISION OF
CPU ARCHITECTURE

Why is CPU architecture relevant?
Matrix-vector multiplication

float x[SIZE];
float y[SIZE];
float A[SIZE * SIZE];

// VERSION 1
for (size_t i = 0; i < SIZE; i++)

for (size_t j = 0; j < SIZE; j++)
y[i] += A[i * SIZE + j] * x[j];

// VERSION 2
for (size_t j = 0; j < SIZE; j++)

for (size_t i = 0; i < SIZE; i++)
y[i] += A[i * SIZE + j] * x[j];

Which version will be faster?

CPU structure
AMD Zen 5 annotated die shot

Source: https://nemez.net/die/

https://nemez.net/die/

CPU structure
AMD Zen 5 annotated die shot

Source: https://nemez.net/die/

https://nemez.net/die/

CPU cache latency
Intel i7-10750H

Source: https://curiouscoding.nl/posts/cpu-benchmarks/

https://curiouscoding.nl/posts/cpu-benchmarks/

Hardware threads (MIMD)
Multiple instructions, multiple data

Source: https://www.tutorialspoint.com/operating_system/os_multi_threading.htm

Multiple threads of
execution, each one with
separate control unit and
data

Multi-core CPUs (you should
already know from OSY),
hyper-threading

https://www.tutorialspoint.com/operating_system/os_multi_threading.htm

SIMD
Single instruction, multiple data

Source: https://commons.wikimedia.org/wiki/File:SIMD2.svg

Single pipeline, single
control unit, multiple ALUs

"data parallelism"

GPUs, vector ALUs in CPUs,
various parallel accelerators

https://commons.wikimedia.org/wiki/File:SIMD2.svg

Why is CPU architecture relevant?
Array sum ("reduction")

float array[SIZE];
float sum = 0.0f;

// split parts of the for loop
// between multiple threads
pragma omp parallel for
for (size_t i = 0; i < SIZE; i++) {

sum += array[i];
}

Why is CPU architecture relevant?
Array sum ("reduction"), improved version

float array[SIZE];
float sums[THREAD_COUNT] = {0.0f};

// split parts of the for loop
// between multiple threads
pragma omp parallel for
for (size_t i = 0; i < SIZE; i++) {

sums[THREAD_ID] += array[i];
}

Resources

• https://www.cs.cmu.edu/~15418/schedule.html
course from Carnegie Mellon University, great slides,
similar area but more in-depth

• https://www.youtube.com/watch?v=eanvgGt-D1o
old recording of the first lecture from the course above

• https://curiouscoding.nl/posts/cpu-benchmarks/
very well-done benchmarks of CPU cache latency

• http://gotw.ca/publications/concurrency-ddj.htm
"The Free Lunch Is Over" by Herb Sutter – article
explaining why parallelism is now the answer
to improving performance

Interesting articles used in this lecture (not mandatory)

https://www.cs.cmu.edu/~15418/schedule.html
https://www.youtube.com/watch?v=eanvgGt-D1o
https://curiouscoding.nl/posts/cpu-benchmarks/
http://gotw.ca/publications/concurrency-ddj.htm

	Slide 1: Parallel and Distributed Computing (B4B36PDV)
	Slide 2: Parallel and Distributed Computing
	Slide 3: Parallel and Distributed Computing
	Slide 4: Parallel Computing
	Slide 5: Motivation
	Slide 6: Contemporary hardware
	Slide 7: Contemporary laptop hardware
	Slide 8: Contemporary laptop hardware
	Slide 9: Compilers will not help us…
	Slide 10: DEMO 1: parallel foreach
	Slide 11: DEMO 2: Student Sum
	Slide 12: Speedup is limited by serialized execution
	Slide 13: Organization
	Slide 14: Who are we?
	Slide 15: What will we use?
	Slide 16: How do we evaluate?
	Slide 17: How to succeed in PDV?
	Slide 18: Quick Revision of CPU Architecture
	Slide 19: Why is CPU architecture relevant?
	Slide 20: CPU structure
	Slide 21: CPU structure
	Slide 22: CPU cache latency
	Slide 23: Hardware threads (MIMD)
	Slide 24: SIMD
	Slide 25: Why is CPU architecture relevant?
	Slide 26: Why is CPU architecture relevant?
	Slide 27: Resources

