
Parallel and Distributed Computing
(B4B36PDV)

Matěj Kafka, Michal Jakob

kafkamat@fel.cvut.cz

https://pdv.pages.fel.cvut.cz

https://pdv.pages.fel.cvut.cz/


Introduction to C++

• Started in 1982 as a superset of C.

• Still mostly compatible with C libraries.

• Provides abstractions such as classes, generics,…

• Still oriented on low-level and high-performance computing.

• "zero-cost abstractions" (unlike e.g. Java)

• Sprawling, complex language, multiple generations of 
overlapping features.

• But handles a lot annoying issues that we would have with C.

• We will be using a carefully selected subset of the language.

C, but easier to use, and much more complex

Don't be afraid to ask questions about C++ at any time.



BASICS OF C++
Coding session 1



Multithreading in C++

• C++ provides cross-platform APIs for working with 
threads, synchronization primitives and atomics.

• Internally, these APIs typically wrap existing APIs 
provided by the platform (pthread on POSIX, Win32 on 
Windows,…).

• std::jthread (C++20)

• std::mutex, std::unique_lock, std::scoped_lock

• std::condition_variable



Multithreading with pthread

How to use pthread threads?

void* fn(void* arg) {
...

}

int main() {
pthread_t thread;
if (0 > pthread_create(&thread, nullptr, fn, nullptr)) {

return 1;
}

...
}

How to use pthread threads?



Multithreading with pthread

void* fn(void* arg) {
...

}

int main() {
pthread_t thread;
if (0 > pthread_create(&thread, nullptr, fn, nullptr)) {

return 1;
}

...

void* return_value;
if (0 > pthread_join(thread, &return_value)) {

return 2;
}

}



MULTITHREADING IN C++
Coding session 2



ATOMIC OPERATIONS
Preventing misunderstandings with the compiler and the CPU



Atomic operations
Why do we even need them?

uint32_t shared_var = 0;

void thread_fn() {
for (size_t i = 0; i < 1'000'000; i++) {

shared_var++;
}

};

auto t1 = std::jthread(thread_fn);
auto t2 = std::jthread(thread_fn);

What values can shared_var have here?



ATOMIC OPERATIONS
Coding session 3



Atomic operations

• std::atomic<T>

• "Type that only lives in memory."

• What does it give us?

1. Ensures that operations on the value are not fragmented.

2. Ensures that operations are not implemented using 
multiple non-atomic operations (e.g., load-modify-store).

3. … is that enough? 



Atomic operations
Is it enough?

bool value = false;
bool value_was_updated = false;

auto t1 = std::jthread([&] {
// we set `value` to true
value = true;
// let the main thread know that we updated the value
value_was_updated = true;

});

// here, we wait until the flag is updated
while (!value_was_updated) {}

// now, `value` must obviously be true
std::cout << "value = " << value << "\n";



Atomic operations
And now?

bool value = false;
std::atomic<bool> value_was_updated = false;

auto t1 = std::jthread([&] {
// we set `value` to true
value = true;
// let the main thread know that we updated the value
value_was_updated = true;

});

// here, we wait until the flag is updated
while (!value_was_updated) {}

// now, `value` must obviously be true
std::cout << "value = " << value << "\n";

* detailed explanation on the last slide



Atomic operations

• std::atomic<T>

• "Type that only lives in memory."

• What does it give us?

1. Ensures that operations on the value are not fragmented.

2. Ensures that operations are not implemented using 
multiple non-atomic operations (e.g., load-modify-store).

3. Ensures causality between operations on different 
threads (if we request it to do so = memory order).

Memory order



Detailed explanation of the last example for atomic variables

Both the compiler and the CPU are allowed to re-order operations under the "as-if" rule – as long as the "observable 
behavior" of the code on a single thread is preserved, both are essentially allowed to make any optimizations. Notably, this 
means that the observed behavior from another thread can differ between CPUs and compilers.

For compilers, the input is your C++ program, and the output is the machine code, composed of CPU instructions. The 
compiler is allowed to reorder or even remove operations, as long as the end result is the same as seen by the current 
thread. For example, in the following program, compiler can increment `j` before `i`, because you won't be able to observe 
any difference in behavior:

However, in the following program, the reordering cannot be done, because it would change the behavior:

Note that "observable behavior" is defined in the C++ standard in a specific way, but mostly aligns with developer 
intuition. After the compiler is done with the program, it is executed by the CPU, which also attempts to make it run faster.
One of the optimizations is that the CPU effectively builds a dependency graph of the executed CPU instructions, and 
executes many instructions in parallel, as long as all their inputs are available ("superscalar CPU").

One of the outcomes is that some CPUs can also reorder memory loads and writes, as long as they can "fake" the correct 
values for other instructions on the same core. In practice, the CPU has a buffer where it stores pending write 
operations, and if a later instruction on the same CPU core reads from an address which has a pending write, the CPU 
forwards the value to the instruction to preserve the illusion of sequential execution, before that value is actually written
to the cache/RAM and visible to other cores (threads).

As a result, it is possible that different cores will observe the same writes in a different order. Specifically in the example 
on the slide, if we did not use an atomic variable, we would risk that the CPU reorders the write to `value` after the write to 
`value_was_updated`.

When we use an atomic store for `value_was_updated` (instead of a normal one), it ensures causality between operations 
done on the spawned thread before the store, and operations after the read in the main thread. That is, if main thread 
observes the write to `value_was_updated`, it is guaranteed that the previous write to `value` is also visible, even though it 
is not an atomic operation. In practice, the atomic store prevents reordering any previous operation after it, and the atomic
load prevents reordering any operations done after it before the load.

uint32_t i = 0, j = 0;
...
i++;
j++;

uint32_t i = 0, j = 0;
...
i++;
j += i;


	Slide 1: Parallel and Distributed Computing (B4B36PDV)
	Slide 2: Introduction to C++
	Slide 3: Basics of C++
	Slide 4: Multithreading in C++
	Slide 5: Multithreading with pthread
	Slide 6: Multithreading with pthread
	Slide 7: Multithreading in C++
	Slide 8: Atomic Operations
	Slide 9: Atomic operations
	Slide 10: Atomic Operations
	Slide 11: Atomic operations
	Slide 12: Atomic operations
	Slide 13: Atomic operations
	Slide 14: Atomic operations
	Slide 15

