Parallel and Distributed Computing
(B4B36PDV)

Matej Kafka, Michal Jakob

kafkamat@fel.cvut.cz

https://pdv.pages.fel.cvut.cz



https://pdv.pages.fel.cvut.cz/

Shared data structures

How to share data between threads?

« Don't.

« Not always possible.
« databases, graph algorithms,...

« Just put the data behind a mutex, right?
« Fine if the data structure is not in the hot path.
« Easily can become a bottleneck.



Reader-writer lock

Mutex that allows multiple readers

« Typically, it is safe to read data from multiple threads.

« But it's not safe to read+write or write+write.

« |t's very common to read a lot but write rarely.

« We want to allow multiple readers XOR a single writer.

« std:shared mutex



Coding session 1

RW LOCK



Reader-writer lock

Mutex that allows multiple readers

« Typically, it is safe to read data from multiple threads.

« But it's not safe to read+write or write+write.

« |t's very common to read a lot but write rarely.

« We want to allow multiple readers XOR a single writer.

« std:shared mutex

« Higher overhead compared to a mutex.

« Possible writer starvation if there are many readers.



Concurrent data structures

« Break up the data structure into smaller parts.

« Synchronize each part separately.

« Multiple threads can operate on different parts of the DS
without blocking.



Coding session 2

CONCURRENT HASH SET



Concurrent data structures

« Break up the data structure into smaller parts.

« Synchronize each part separately.

« Multiple threads can operate on different parts of the DS
without blocking.

« Sometimes we need to synchronize on the whole DS.
« Typically much faster than locking the whole DS.

 Granularity trade-off
« The more locks we have, the higher the total overhead.
« Sometimes we cannot find a good compromise.



Lock-free data structures

Remove all software locking

 Instead of using software mutexes, we can let hardware
take care of synchronization -> atomic variables.

« What's a mutex anyway?

« Let us take a small detour...



Atomic variables Il

It does not get easier...

e std::atomic<T>

"Type that only lives in memory."

« What does it give us?

1. Ensures that operations on the value are not
fragmented.

2. Ensures that operations are not implemented using
multiple non-atomic operations (e.g., load-modify-
store).

3. ...is that enough?



Coding session 3

ATOMIC VARIABLES



Atomic variables Il

How about more complex operations?

 Typically, we need to do a more complex operation.

« Often, we can express the operation in three steps:
1. Read the current state from the data structure.

2. Do some thread-local operation (e.g. allocate a node,
compare an existing value).

3. Update the data structure with a new value.

« Read-Modify-Write (RMW)
« You might know the concept from database transactions.

Idea: If we could do the update using a single atomic

operation, we'd be much closer to solving the issue.



Compare-and-swap

« We have a race condition between the read (step 1) and
the update (step 3).

 Instead, we can make the update step conditional.

"If the previously read value is still the same,

replace it with this new value.”

// SINGLE ATOMIC OPERATION

if (xvalue == previous_value) {
*value = new_value;
} else {

previous_value = *value;

}



Coding session 4

COMPARE AND SWAP



Lock-free data structures
A small disclaimer

Do try this at home.

But (almost) never try it at work!

https://abseil.io/docs/cpp/atomic_danger



https://abseil.io/docs/cpp/atomic_danger

Lock-free stack

« Basic data structure based on a linked list.

« 3 operations:
« Push

« Find IEI IE. Iil
+ Pop I'Ii%i'lk__' : : “*llﬂ!!ll

class node {

public:
std: :atomic<node*> m_next
T m_value;

nullptr;

explicit node(T value)
: m_value(value) {}




Lock-free stack

Push (add new value to the top of the stack)



Lock-free stack

Push (add new value to the top of the stack)

void push(T value) A

auto new_node = new node(value);
auto first_node = m_head.load();
do {

new_node->m_next = first_node;
// If the condition below fails,
// first_node’ is updated to the current value
} while (!m_head.compare_exchange_weak(first_node, new_node));

AN C

e



Lock-free stack

Find (does the stack contain a specific value?)



Lock-free stack

Find (does the stack contain a specific value?)

bool contains(T value) const {
auto node = m_head.load();
while (node != nullptr) {
if (node->m_value == value) {
return true;

}

node = node->m_next.load();

}

return false;



Lock-free stack

Pop (remove value from the top of the stack)



Lock-free stack

Pop (remove value from the top of the stack)

// INCORRECT
std::optional<T> pop() {
auto first_node = m_head.load();
while (first_node != nullptr) {
auto second_node = first_node->m_next.load();
if (m_head.compare_exchange_weak(first_node, second_node))

{
auto value = first_node->m_value;
delete first_node;
return value;
1
// retry, first_node is updated to the new value
1
return {};



ABA problem

 If I load an atomic value twice, and the value is still the
same, it does not necessarily mean that it did not change
In the meantime.

« |f someone deallocates a node and then allocates a new
one, allocator will often return the just-freed allocation.

« We need to augment the data to unambiguously know if
there was a change since the last read.

« Include a counter next to the pointer.

* Note that the counter must be a part of the pointer (e.g.
HEAD), not the target node.

https://en.wikipedia.org/wiki/ABA_problem#Examples



https://en.wikipedia.org/wiki/ABA_problem#Examples

Node deallocation

« We cannot touch the first node, since it may have been
deallocated in the meantime.

Not a problem in garbage-collected language.

Very hard to solve in C++ (out of scope for PDV).
hazard pointers
RCU



	Slide 1: Parallel and Distributed Computing (B4B36PDV)
	Slide 2: Shared data structures
	Slide 3: Reader-writer lock
	Slide 4: RW LOCK
	Slide 5: Reader-writer lock
	Slide 6: Concurrent data structures
	Slide 7: Concurrent Hash Set
	Slide 8: Concurrent data structures
	Slide 9: Lock-free data structures
	Slide 10: Atomic variables II
	Slide 11: Atomic Variables
	Slide 12: Atomic variables II
	Slide 13: Compare-and-swap
	Slide 14: Compare And Swap
	Slide 15: Lock-free data structures
	Slide 16: Lock-free stack
	Slide 17: Lock-free stack
	Slide 18: Lock-free stack
	Slide 19: Lock-free stack
	Slide 20: Lock-free stack
	Slide 21: Lock-free stack
	Slide 22: Lock-free stack
	Slide 23: ABA problem
	Slide 24: Node deallocation

