
Parallel and Distributed Computing
(B4B36PDV)

Matěj Kafka, Michal Jakob

kafkamat@fel.cvut.cz

https://pdv.pages.fel.cvut.cz

https://pdv.pages.fel.cvut.cz/


Shared data structures

• Don't.

• Not always possible.

• databases, graph algorithms,…

• Just put the data behind a mutex, right?

• Fine if the data structure is not in the hot path.

• Easily can become a bottleneck.

How to share data between threads?



Reader-writer lock

• Typically, it is safe to read data from multiple threads.

• But it's not safe to read+write or write+write.

• It's very common to read a lot but write rarely.

• We want to allow multiple readers XOR a single writer.

• std::shared_mutex

Mutex that allows multiple readers



RW LOCK
Coding session 1



Reader-writer lock

• Typically, it is safe to read data from multiple threads.

• But it's not safe to read+write or write+write.

• It's very common to read a lot but write rarely.

• We want to allow multiple readers XOR a single writer.

• std::shared_mutex

• Higher overhead compared to a mutex.

• Possible writer starvation if there are many readers.

Mutex that allows multiple readers



Concurrent data structures

• Break up the data structure into smaller parts.

• Synchronize each part separately.

• Multiple threads can operate on different parts of the DS 
without blocking.



CONCURRENT HASH SET
Coding session 2



Concurrent data structures

• Break up the data structure into smaller parts.

• Synchronize each part separately.

• Multiple threads can operate on different parts of the DS 
without blocking.

• Sometimes we need to synchronize on the whole DS.

• Typically much faster than locking the whole DS.

• Granularity trade-off

• The more locks we have, the higher the total overhead.

• Sometimes we cannot find a good compromise.



Lock-free data structures

• Instead of using software mutexes, we can let hardware 
take care of synchronization -> atomic variables.

• What's a mutex anyway?

• Let us take a small detour…

Remove all software locking



Atomic variables II
It does not get easier…

• std::atomic<T>

• "Type that only lives in memory."

• What does it give us?

1. Ensures that operations on the value are not 
fragmented.

2. Ensures that operations are not implemented using 
multiple non-atomic operations (e.g., load-modify-
store).

3. … is that enough? 



ATOMIC VARIABLES
Coding session 3



Atomic variables II
How about more complex operations?

• Typically, we need to do a more complex operation.

• Often, we can express the operation in three steps:

1. Read the current state from the data structure.

2. Do some thread-local operation (e.g. allocate a node, 
compare an existing value).

3. Update the data structure with a new value.

• Read-Modify-Write (RMW)

• You might know the concept from database transactions.

Idea: If we could do the update using a single atomic 
operation, we'd be much closer to solving the issue.



Compare-and-swap

• We have a race condition between the read (step 1) and 
the update (step 3).

• Instead, we can make the update step conditional.

"CAS"

"If the previously read value is still the same,
replace it with this new value."

// SINGLE ATOMIC OPERATION
if (*value == previous_value) {

*value = new_value;
} else {

previous_value = *value;
}



COMPARE AND SWAP
Coding session 4



Lock-free data structures
A small disclaimer

Do try this at home.

But (almost) never try it at work!

https://abseil.io/docs/cpp/atomic_danger

https://abseil.io/docs/cpp/atomic_danger


Lock-free stack

• Basic data structure based on a linked list.

• 3 operations:

• Push

• Find

• Pop

A B

head

C

NULL

class node {
public:

std::atomic<node*> m_next = nullptr;
T m_value;

explicit node(T value)
: m_value(value) {}

};



Lock-free stack
Push (add new value to the top of the stack)



Lock-free stack
Push (add new value to the top of the stack)

A B

head

C

NULL

X

void push(T value) {
auto new_node = new node(value);
auto first_node = m_head.load();
do {

new_node->m_next = first_node;
// if the condition below fails,
// first_node` is updated to the current value

} while (!m_head.compare_exchange_weak(first_node, new_node));
}



Lock-free stack
Find (does the stack contain a specific value?)



Lock-free stack
Find (does the stack contain a specific value?)

bool contains(T value) const {
auto node = m_head.load();
while (node != nullptr) {

if (node->m_value == value) {
return true;

}
node = node->m_next.load();

}
return false;

}



Lock-free stack
Pop (remove value from the top of the stack)



Lock-free stack
Pop (remove value from the top of the stack)

// INCORRECT
std::optional<T> pop() {

auto first_node = m_head.load();
while (first_node != nullptr) {

auto second_node = first_node->m_next.load();
if (m_head.compare_exchange_weak(first_node, second_node))
{

auto value = first_node->m_value;
delete first_node;
return value;

}
// retry, first_node is updated to the new value

}
return {};

}



ABA problem

• If I load an atomic value twice, and the value is still the 
same, it does not necessarily mean that it did not change 
in the meantime.

• If someone deallocates a node and then allocates a new
one, allocator will often return the just-freed allocation.

• We need to augment the data to unambiguously know if 
there was a change since the last read.

• Include a counter next to the pointer.

• Note that the counter must be a part of the pointer (e.g.
HEAD), not the target node.

https://en.wikipedia.org/wiki/ABA_problem#Examples

https://en.wikipedia.org/wiki/ABA_problem#Examples


Node deallocation

• We cannot touch the first node, since it may have been 
deallocated in the meantime.

• Not a problem in garbage-collected language.

• Very hard to solve in C++ (out of scope for PDV).

• hazard pointers

• RCU


	Slide 1: Parallel and Distributed Computing (B4B36PDV)
	Slide 2: Shared data structures
	Slide 3: Reader-writer lock
	Slide 4: RW LOCK
	Slide 5: Reader-writer lock
	Slide 6: Concurrent data structures
	Slide 7: Concurrent Hash Set
	Slide 8: Concurrent data structures
	Slide 9: Lock-free data structures
	Slide 10: Atomic variables II
	Slide 11: Atomic Variables
	Slide 12: Atomic variables II
	Slide 13: Compare-and-swap
	Slide 14: Compare And Swap
	Slide 15: Lock-free data structures
	Slide 16: Lock-free stack
	Slide 17: Lock-free stack
	Slide 18: Lock-free stack
	Slide 19: Lock-free stack
	Slide 20: Lock-free stack
	Slide 21: Lock-free stack
	Slide 22: Lock-free stack
	Slide 23: ABA problem
	Slide 24: Node deallocation

