
Parallel and Distributed Computing
(B4B36PDV)

Matěj Kafka, Michal Jakob

kafkamat@fel.cvut.cz

https://pdv.pages.fel.cvut.cz

https://pdv.pages.fel.cvut.cz/


OPENMP CANCELLATION 
AND NESTED PARALLELISM

Coding session 1 (leftovers from lecture 3)



How to solve problems faster?

1. Define a problem.

2. Think about it.

3. Implement a serial solution.

4. Is it fast enough? You're finished. *

5. Is it easy to make it faster? Go to step 2. *

6. Think about it.

7. Is it hard to parallelize? Go to step 2. *

…

First, solve them serially.

*All conditions are quite fuzzy.



How to solve parallel problems faster?

…

8. Decompose the problem into parallelizable parts.

9. Implement a parallel solution on the CPU.

10. Is it fast enough? You're finished. *

11. Can you easily improve the solution? Go to step 8. *

• Can you make the decomposition more granular?

• Can you use a different decomposition?

12. Is it possible to use SIMD? Use a GPU, go to step 8. *

13. Buy better hardware or get better at optimization.

Only then try to parallelize.

*All conditions are quite fuzzy.



DESIGNING PARALLEL 
ALGORITHMS

"Decompose the problem into parallelizable parts."



Designing a parallel algorithm
https://www.cs.cmu.edu/~15418/lectures/06_progbasics.pdf

https://www.cs.cmu.edu/~15418/lectures/06_progbasics.pdf




Data decomposition

• Partition the problem based on input / intermediate / 
output data.

• Applicable if we have the whole input up-front, and the 
operation is a somewhat straightforward mapping from 
the input to the output.

• Very common, typically the serial solution involves a loop 
over all input data.

• pragma omp for

Split input/output data between threads.

https://commons.wikimedia.org/wiki/File:Matrix_multiplication_qtl1.svg

https://commons.wikimedia.org/wiki/File:Matrix_multiplication_qtl1.svg


Recursive decomposition

• We know all parts of the problem up front but cannot 
easily decompose it directly.

• Divide and conquer.

• Create tasks by recursively splitting the work into smaller, 
mostly independent parts.

• Typically a good fit for OpenMP tasks.

• Example: Quicksort

• Example: Most algorithms on a tree

Recursively break the problem down into tasks.

https://en.wikipedia.org/wiki/File:Sierpinski_triangle.svg

https://en.wikipedia.org/wiki/File:Sierpinski_triangle.svg


Explorative decomposition

• We discover parts of the problem space as we explore it.

• We typically do not have a good estimate for the size 
and structure of each discovered subproblem.

• Example: Many discrete optimalization problems

• Example: Game playing (e.g. Reversi from RPH)

Dynamically create tasks while exploring the state space.

https://www.codertime.org/minimax-chess-engine-programming-r/

https://www.codertime.org/minimax-chess-engine-programming-r/




Assignment
Which thread executes which task?



Assignment

• Assign each task to a thread.

• Assignment will significantly affect runtime performance.

• Synchronization/dependencies between tasks on the same 
thread is typically free.

• Not the case for tasks on different threads.

• You already know about
OpenMP loop scheduling.

• Goals:

• Balance workload.

• Minimize communication.

• Minimize duplication.

Which thread executes which task?

0

5

10

15

Computation time [s] for each thread

P1 P2 P3 P4



Static assignment

• Each thread is assigned some tasks at the beginning of the 
computation (may still depend on runtime parameters).

• Should have almost zero runtime overhead.

Ahead-of-time, no load balancing.

















Dynamic assignment using a work queue
Generalization of loop index assignment.

T4

Threads in a thread pool accept new tasks and execute them.

Set of starting tasks

Work queue, shared between threads.

T3T2T1

Threads can add new tasks.















Orchestration
Synchronization, ordering, data structures.



Orchestration
Synchronization, ordering, data structures.

• Add communication between tasks to ensure:

• Safe access to shared resources.

• Correct dependencies (e.g. one task needs data from 
another task).

• Strive to minimize communication and waiting time.

• Dependent on our hardware.

• Available tools and approaches already covered by 
previous lectures.



Mapping to hardware
Executing an abstract program on real hardware.





PRACTICAL EXAMPLES
Slightly less trivial than the ones so far…



Divide and conquer
Quicksort

• Basic, but very common sorting algorithm.

• In each level of recursion, select a pivot, reorder numbers so 
that the pivot is in the correct position, then recurse into each 
half.

template<typename It>
void quicksort(It begin, It end) {

if (end - begin <= 1) {
return;

}

// use first value as pivot
auto pivot_it = partition(begin, end, begin);

quicksort(begin, pivot_it);
quicksort(pivot_it + 1, end);

}



Divide and conquer
Quicksort

template<typename It>
void quicksort(It begin, It end, size_t task_count) {

if (end - begin <= 1) return;

if (task_count == 1) {
quicksort_seq(begin, end);
return;

}

// use first value as pivot
auto pivot_it = partition(begin, end, begin);

#pragma omp task
quicksort(begin, pivot_it, task_count / 2);

// run this branch in the current task
quicksort(pivot_it + 1, end, task_count / 2);

}

Cutoff -> switch 
to serial version.

Create a task for one branch.

Avoid task 
overhead.



Heat diffusion simulation
Let's make it a bit harder.

• Quicksort parallelization was easy, as we had no dependencies.

• What if we have dependencies?

Adapted from CMU 15-418/618, at https://www.cs.cmu.edu/~15418/.

Problem: We have a 2D space containing heat 
sources and sinks with fixed temperature. Find 
the stable temperature of each point.

• Simplification: Discretize to 2D grid.

• 𝐴 𝑖, 𝑗 = 0.2 ∗ ሺ
ሻ

𝐴 𝑖 − 1, 𝑗 + 𝐴 𝑖, 𝑗 − 1 + 𝐴 𝑖, 𝑗 +
𝐴 𝑖 + 1, 𝑗 + 𝐴 𝑖, 𝑗 + 1

• Iteratively compute heat transfer for each 
point until the system stabilizes, going row 
by row.

• Note that some of the surrounding points 
have already been updated, some not.

https://www.cs.cmu.edu/~15418/


Heat diffusion simulation
What are the dependencies in one iteration?



Heat diffusion simulation
What can we execute in parallel?



Heat diffusion simulation

• Parallelization on diagonals needs too much 
synchronization.

• Idea: Could we change the algorithm to still reach the 
same result, but make it easier to parallelize?

• We could change iteration
order to first update odd
nodes, then the even ones.

• Is that correct?

• = Does it give the same
steady state?

Reformulate the problem.



Heat diffusion simulation
How to assign areas?



Heat diffusion simulation
2D assignment

T1 T2 T3

T4 T6

T7 T8 T9

T5



Sieve of Eratosthenes
More dependencies.

std::vector<uint64_t> find_primes_under(uint64_t max_n) {
auto found_primes = std::vector<uint64_t>();
auto sieve = std::vector<bool>(max_n, true);

for (size_t n = 2; n <= std::sqrt(max_n); n++) {
if (sieve[n]) {

found_primes.push_back(n);
for (size_t mult = n; mult < max_n; mult += n) {

sieve[mult] = false;
}

}
}

for (size_t n = std::sqrt(max_n); n < max_n; n++) {
if (sieve[n]) {

found_primes.push_back(n);
}

}
return found_primes;

}



Sieve of Eratosthenes

• We could parallelize the outer loop.

• LOT of duplicated work, since we don't yet know if the 
number is prime when pruning its multiples.

• Likely results in frequent false sharing.

• But the result is correct.

• We could parallelize the inner loop.

• Quite obviously safe, with minimal sharing.

• Somewhat high overhead from barriers.

• Can we do something smarter?

• What are the actual dependencies?

How to parallelize?



Sieve of Eratosthenes

• We can start pruning multiples of X when we know
that X is prime.

• We know that X is prime when we already pruned
all its possible divisors.

• Huh…

What are the dependencies?

i=2

i=3

i=4

i=5

i=6



Sieve of Eratosthenes

• Do we know anything about the structure of primes?

• Yes: If we're pruning multiples of n, we know that 
everything unpruned under 2*n is a prime.

• We can safely parallelize batches between powers of 2.

• 2 -> 4 -> 8 -> 16 -> 32 -> 64 -> 128 -> …

• How to parallelize?

1. Split primes between threads.
• Each thread picks a prime and prunes its multiples.

2. Split subranges of the sieve between threads.
• Each thread prunes a range of numbers for all primes.

What are the dependencies?



Sieve of Eratosthenes

• Can we make the batches even larger?

• Yes: If we reached sqrt(n) and did not prune n, we 
know it's a prime!

• We can jump by exponentiation, not just multiplication!

• 2 -> 4 -> 16 -> 256 -> 65535 -> …

What are the dependencies?


	Slide 1: Parallel and Distributed Computing (B4B36PDV)
	Slide 2: OpenMP Cancellation AND NESTED PARALLELISM
	Slide 3: How to solve problems faster?
	Slide 4: How to solve parallel problems faster?
	Slide 5: Designing parallel algorithms
	Slide 6: Designing a parallel algorithm
	Slide 7
	Slide 8: Data decomposition
	Slide 9: Recursive decomposition
	Slide 10: Explorative decomposition
	Slide 11
	Slide 12: Assignment
	Slide 13: Assignment
	Slide 14: Static assignment
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Dynamic assignment using a work queue
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Orchestration
	Slide 30: Orchestration
	Slide 31: Mapping to hardware
	Slide 32
	Slide 33: Practical Examples
	Slide 34: Divide and conquer
	Slide 35: Divide and conquer
	Slide 36: Heat diffusion simulation
	Slide 37: Heat diffusion simulation
	Slide 38: Heat diffusion simulation
	Slide 39: Heat diffusion simulation
	Slide 40: Heat diffusion simulation
	Slide 41: Heat diffusion simulation
	Slide 42: Sieve of Eratosthenes
	Slide 43: Sieve of Eratosthenes
	Slide 44: Sieve of Eratosthenes
	Slide 45: Sieve of Eratosthenes
	Slide 46: Sieve of Eratosthenes

