

### Parallel and Distributed Computing (B4B36PDV)

Matěj Kafka, Michal Jakob

kafkamat@fel.cvut.cz <u>https://pdv.pages.fel.cvut.cz</u>

# OPENMP CANCELLATION AND NESTED PARALLELISM

Coding session 1 (leftovers from lecture 3)

### How to solve problems faster?

First, solve them serially.

- 1. Define a problem.
- 2. Think about it.
- 3. Implement a serial solution.
- 4. Is it fast enough? You're finished. \*
- 5. Is it easy to make it faster? Go to step 2. \*
- 6. Think about it.

. . .

7. Is it hard to parallelize? Go to step 2. \*

\*All conditions are quite fuzzy.

#### How to solve parallel problems faster? Only then try to parallelize.

- 8. Decompose the problem into parallelizable parts.
- 9. Implement a parallel solution on the CPU.
- 10. Is it fast enough? You're finished. \*
- 11. Can you easily improve the solution? Go to step 8. \*
  - Can you make the decomposition more granular?
  - Can you use a different decomposition?
- 12. Is it possible to use SIMD? Use a GPU, go to step 8. \*
- 13. Buy better hardware or get better at optimization.

\*All conditions are quite fuzzy.

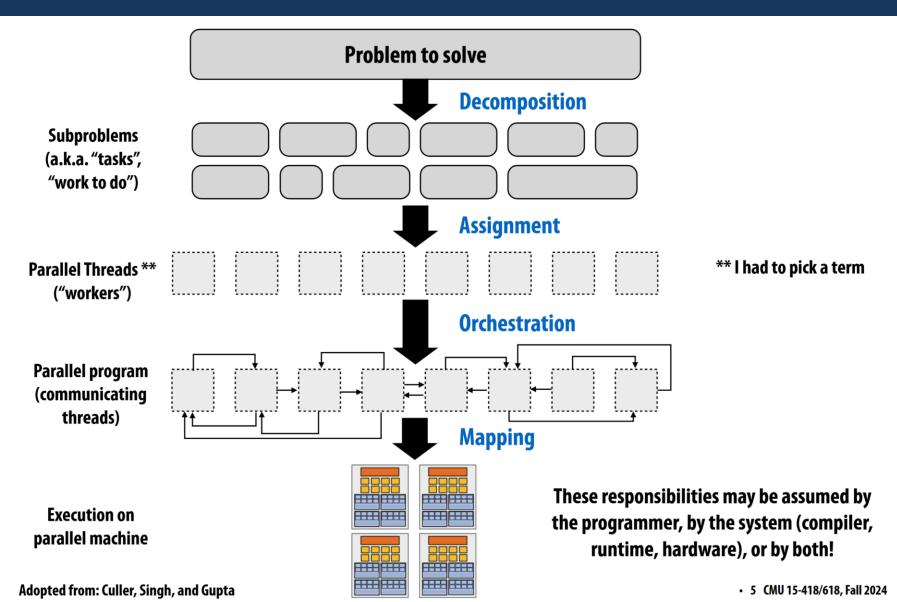
...

# DESIGNING PARALLEL ALGORITHMS

"Decompose the problem into parallelizable parts."

### **Designing a parallel algorithm**

https://www.cs.cmu.edu/~15418/lectures/06\_progbasics.pdf



### Decomposition

Break up problem into tasks that <u>can</u> be carried out in parallel

- Decomposition need not happen statically
- New tasks can be identified as program executes

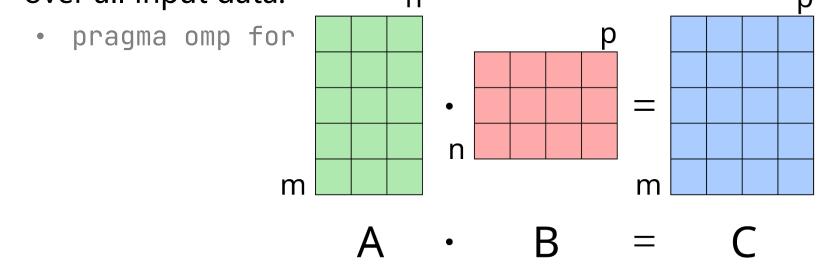
<u>Main idea</u>: create *at least* enough tasks to keep all execution units on a machine busy

### Key aspect of decomposition: identifying dependencies (or... a lack of dependencies)

### **Data decomposition**

Split input/output data between threads.

- Partition the problem based on input / intermediate / output data.
- Applicable if we have the whole input up-front, and the operation is a somewhat straightforward mapping from the input to the output.
- Very common, typically the serial solution involves a loop over all input data.



https://commons.wikimedia.org/wiki/File:Matrix\_multiplication\_qtl1.svg

### **Recursive decomposition**

Recursively break the problem down into tasks.

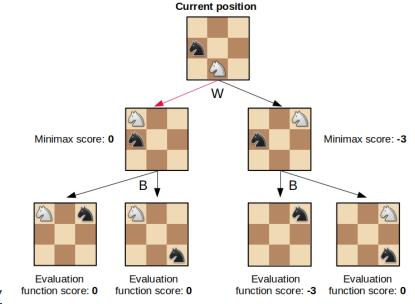
- We know all parts of the problem up front but cannot easily decompose it directly.
- Divide and conquer.
  - Create tasks by recursively splitting the work into smaller, mostly independent parts.
- Typically a good fit for OpenMP tasks.
- Example: Quicksort
- Example: Most algorithms on a tree

https://en.wikipedia.org/wiki/File:Sierpinski\_triangle.svg

### **Explorative decomposition**

Dynamically create tasks while exploring the state space.

- We discover parts of the problem space as we explore it.
- We typically do not have a good estimate for the size and structure of each discovered subproblem.
- Example: Many discrete optimalization problems
- Example: Game playing (e.g. Reversi from RPH)



https://www.codertime.org/minimax-chess-engine-programming-r/

### Decomposition

#### Who is responsible for performing decomposition?

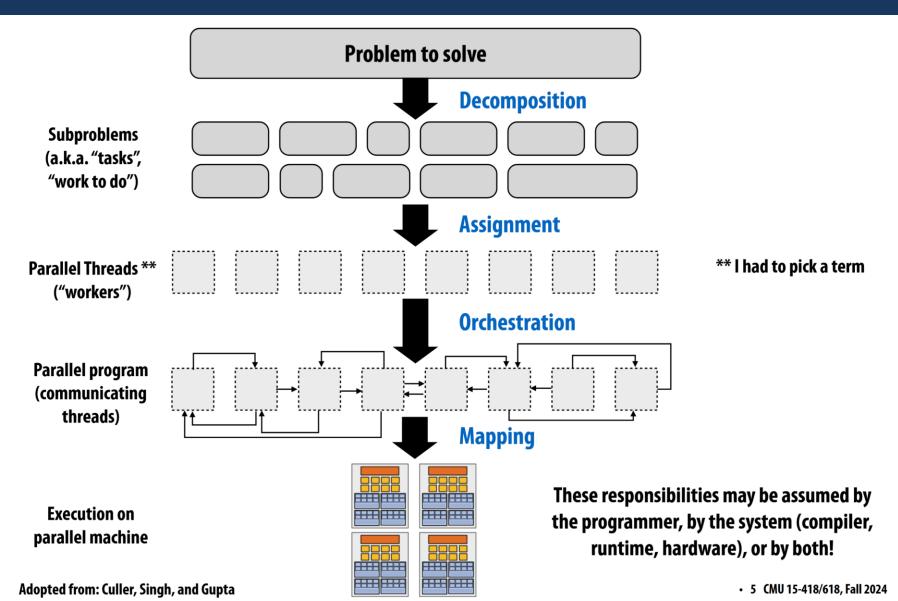
— In most cases: the programmer

# Automatic decomposition of sequential programs continues to be a challenging research problem (very difficult in general case)

- Compiler must analyze program, identify dependencies
  - What if dependencies are data dependent (not known at compile time)?
- Researchers have had modest success with simple loop nests
- The "magic parallelizing compiler" for complex, general-purpose code has not yet been achieved

### Assignment

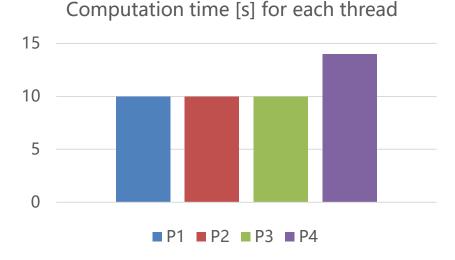
#### Which thread executes which task?



### Assignment

Which thread executes which task?

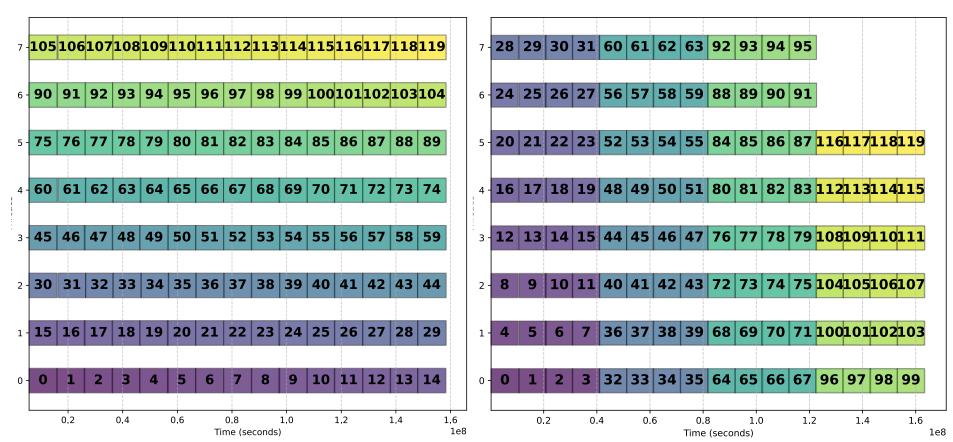
- Assign each task to a thread.
- Assignment will significantly affect runtime performance.
  - Synchronization/dependencies between tasks on the same thread is typically free.
  - Not the case for tasks on different threads.
- You already know about OpenMP loop scheduling.
- Goals:
  - Balance workload.
  - Minimize communication.
  - Minimize duplication.



### Static assignment

Ahead-of-time, no load balancing.

- Each thread is assigned some tasks at the beginning of the computation (may still depend on runtime parameters).
- Should have almost zero runtime overhead.



## When is static assignment applicable?

- When the cost (execution time) of work and the amount of work is predictable (so the programmer can work out a good assignment in advance)
- Simplest example: it is known up front that all work has the same cost



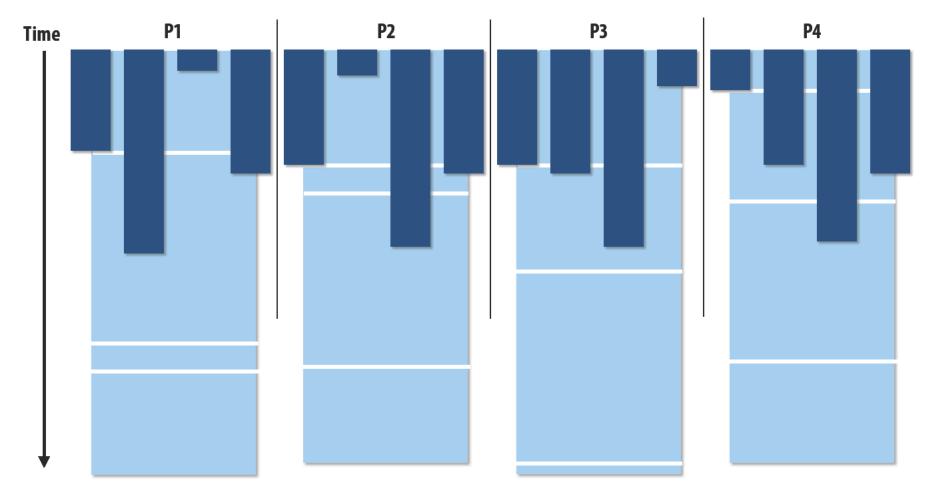
In the example above:

There are 12 tasks, and it is known that each have the same cost.

Assignment solution: statically assign three tasks to each of the four processors.

## When is static assignment applicable?

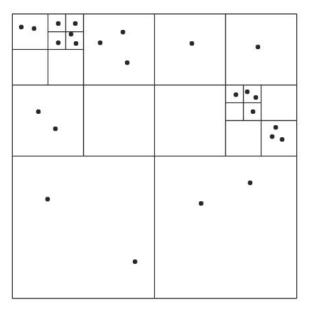
- When work is predictable, but not all jobs have same cost (see example below)
- When statistics about execution time are known (e.g., same cost on average)



Jobs have unequal, but known cost: assign to processors to ensure overall good load balance

### "Semi-static" assignment

- Cost of work is predictable for near-term future
  - Idea: recent past good predictor of near future
- Application periodically profiles itself and re-adjusts assignment
  - Assignment is "static" for the interval between re-adjustments



Particle simulation:

Redistribute particles as they move over course of simulation (if motion is slow, redistribution need not occur often)

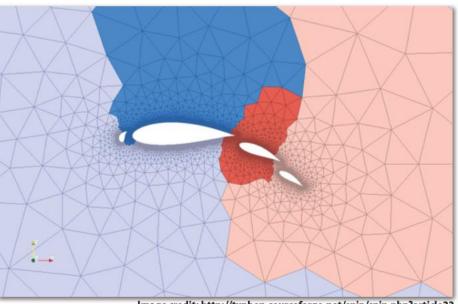


Image credit: http://typhon.sourceforge.net/spip/spip.php?article22

Adaptive mesh:

Mesh is changed as object moves or flow over object changes, but changes occur slowly (color indicates assignment of parts of mesh to processors)

## **Dynamic assignment**

# Program determines assignment dynamically at runtime to ensure a well distributed load. (The execution time of tasks, or the total number of tasks, is unpredictable.)

### Sequential program (independent loop iterations)

```
int N = 1024;
int* x = new int[N];
bool* prime = new bool[N];
// initialize elements of x here
for (int i=0; i<N; i++)
{
    // unknown execution time
    is_prime[i] = test_primality(x[i]);
}
```

#### Parallel program (SPMD execution by multiple threads, shared address space model)

```
int N = 1024;
// assume allocations are only executed by 1 thread
int* x = new int[N];
bool* is prime = new bool[N];
// initialize elements of x here
LOCK counter lock;
int counter = 0; // shared variable
while (1) {
  int i;
  lock(counter lock);
                                      atomic incr(counter);
  i = counter++;
  unlock(counter_lock);
  if (i \ge N)
     break;
  is_prime[i] = test_primality(x[i]);
```

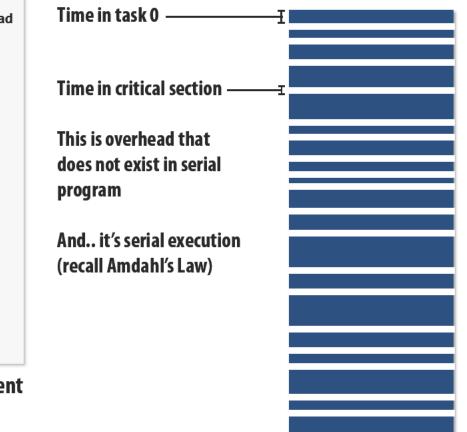
### What constitutes a piece of work?

#### What is a potential problem with this implementation?

```
const int N = 1024;
// assume allocations are only executed by 1 thread
float* x = new float[N];
bool* prime = new bool[N];
// initialize elements of x here
LOCK counter lock;
int counter = 0;
while (1) {
  int i;
  lock(counter lock);
  i = counter++;
  unlock(counter_lock);
  if (i \ge N)
     break;
  is_prime[i] = test_primality(x[i]);
```

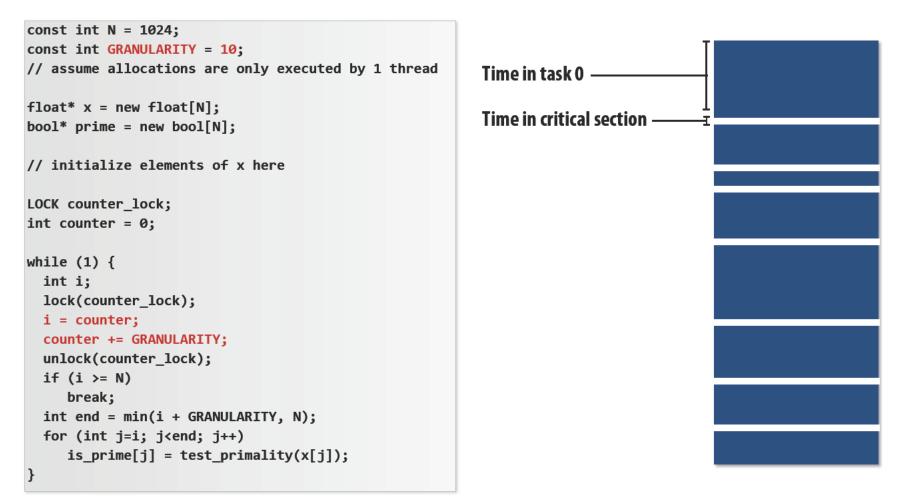
Fine granularity partitioning: 1 "task" = 1 element

Likely good workload balance (many small tasks) Potential for high synchronization cost (serialization at critical section)



### So... IS IT a problem?

### **Increasing task granularity**

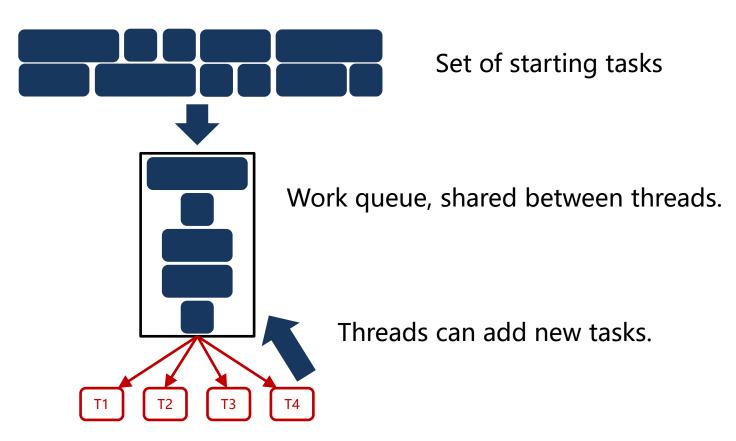


Coarse granularity partitioning: 1 "task" = 10 elements Decreased synchronization cost (Critical section entered 10 times less)

### **Choosing task size**

- Useful to have many more tasks\* than processors (many small tasks enables good workload balance via dynamic assignment)
  - Motivates small granularity tasks
- But want as few tasks as possible to minimize overhead of managing the assignment
  - Motivates large granularity tasks
- Ideal granularity depends on many factors (Common theme in this course: must know your workload, and your machine)

#### **Dynamic assignment using a work queue** Generalization of loop index assignment.

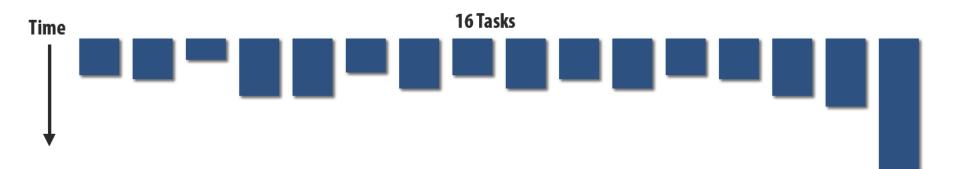


Threads in a thread pool accept new tasks and execute them.

### Smarter task scheduling

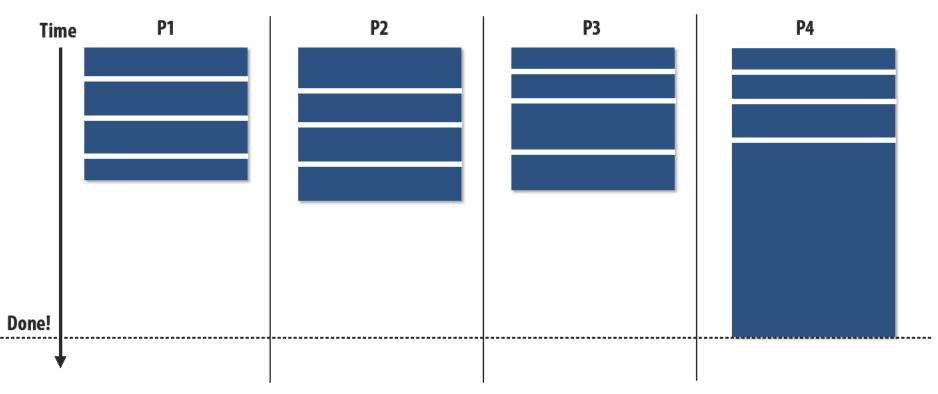
Consider dynamic scheduling via a shared work queue

What happens if the system assigns these tasks to workers in left-to-right order?



### Smarter task scheduling

What happens if scheduler runs the long task last? Potential for load imbalance!



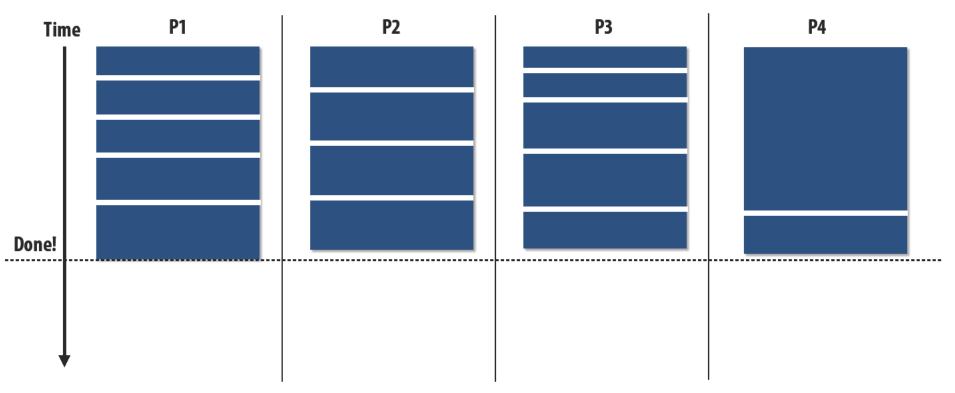
One possible solution to imbalance problem:

Divide work into a larger number of smaller tasks

- Hopefully "long pole" gets shorter relative to overall execution time
- May increase synchronization overhead
- May not be possible (perhaps long task is fundamentally sequential)

### Smarter task scheduling

Schedule long task first to reduce "slop" at end of computation



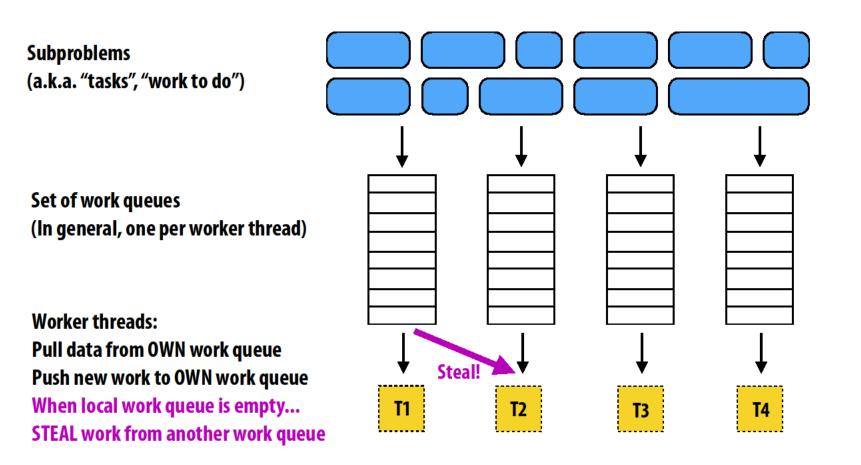
#### Another solution: smarter scheduling

#### Schedule long tasks first

- Thread performing long task performs fewer overall tasks, but approximately the same amount of work as the other threads.
- Requires some knowledge of workload (some predictability of cost)

### Decreasing synchronization overhead using a distributed set of queues

(avoid need for all workers to synchronize on single work queue)

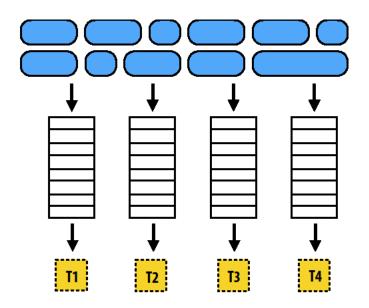


### **Distributed work queues**

- Costly synchronization/communication occurs during stealing
  - But not every time a thread takes on new work
  - Stealing occurs only when necessary to ensure good load balance
- Leads to increased locality
  - Common case: threads work on tasks they create (producer-consumer locality)

#### Implementation challenges

- Who to steal from?
- How much to steal?
- How to detect program termination?
- Ensuring local queue access is fast (while preserving mutual exclusion)



### Summary

#### Challenge: achieving good workload balance

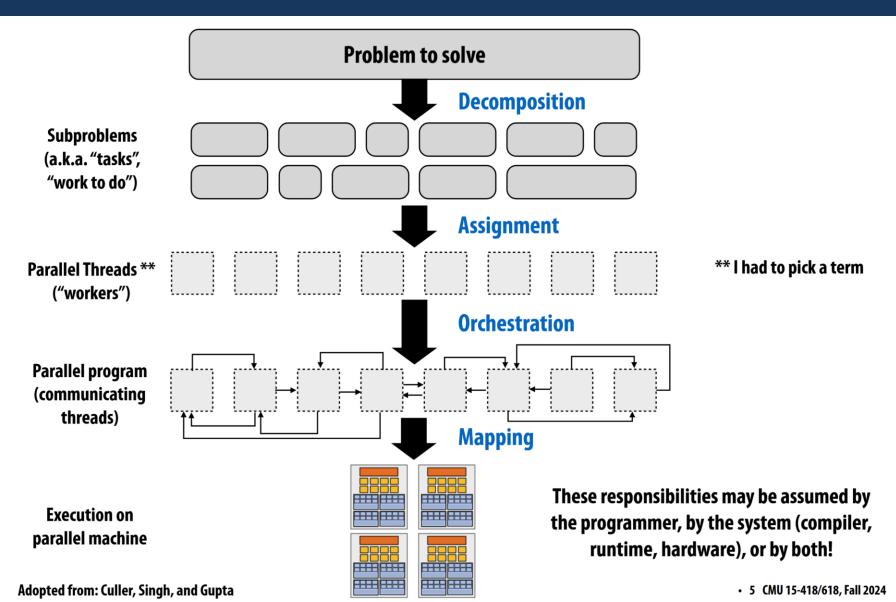
- Want all processors working all the time (otherwise, resources are idle!)
- But want low-cost solution for achieving this balance
  - Minimize computational overhead (e.g., scheduling/assignment logic)
  - Minimize synchronization costs

#### Static assignment vs. dynamic assignment

- Really, it is not an either/or decision, there's a continuum of choices
- Use up-front knowledge about workload as much as possible to reduce load imbalance and task management/synchronization costs (in the limit, if the system knows everything, use fully static assignment)
- Issues discussed today span decomposition, assignment, and orchestration

#### Orchestration

#### Synchronization, ordering, data structures.



### Orchestration

Synchronization, ordering, data structures.

- Add communication between tasks to ensure:
  - Safe access to shared resources.
  - Correct dependencies (e.g. one task needs data from another task).

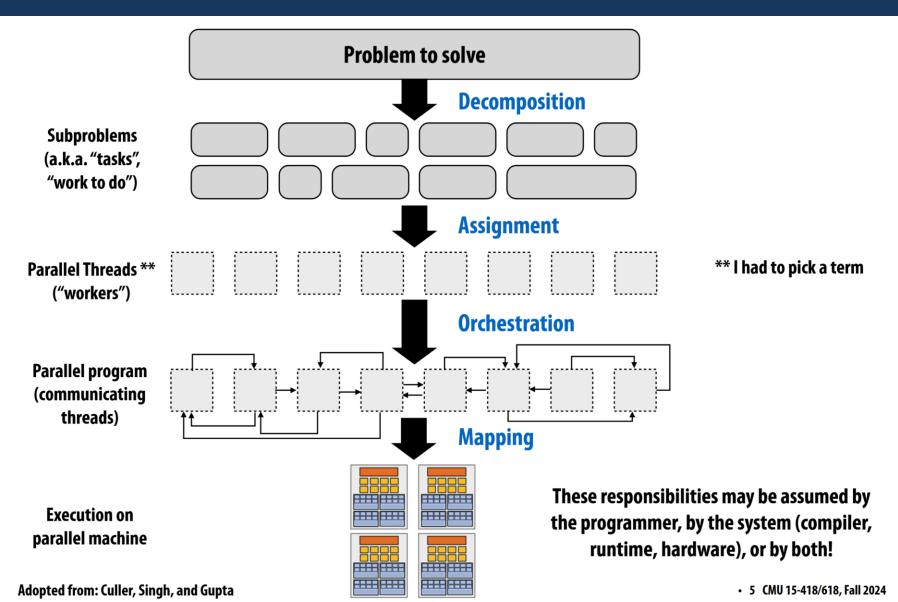
• Strive to minimize communication and waiting time.

• Dependent on our hardware.

Available tools and approaches already covered by previous lectures.

### Mapping to hardware

Executing an abstract program on real hardware.



## Mapping to hardware

#### Mapping "threads" ("workers") to hardware execution units

#### **Example 1**: mapping by the operating system

- e.g., map pthread to HW execution context on a CPU core

#### **Example 2: mapping by the compiler**

Map ISPC program instances to vector instruction lanes

#### **Example 3**: mapping by the hardware

- Map CUDA thread blocks to GPU cores (future lecture)

#### Some interesting mapping decisions:

- Place <u>related</u> threads (cooperating threads) on the same processor (maximize locality, data sharing, minimize costs of comm/sync)
- Place <u>unrelated</u> threads on the same processor (one might be bandwidth limited and another might be compute limited) to use machine more efficiently

Slightly less trivial than the ones so far...

### **PRACTICAL EXAMPLES**

#### **Divide and conquer** Quicksort

- Basic, but very common sorting algorithm.
- In each level of recursion, select a pivot, reorder numbers so that the pivot is in the correct position, then recurse into each half.

```
template<typename It>
void quicksort(It begin, It end) {
    if (end - begin <= 1) {
        return;
    }
    // use first value as pivot
    auto pivot_it = partition(begin, end, begin);
    quicksort(begin, pivot_it);
    quicksort(pivot_it + 1, end);
}</pre>
```

# Divide and conquer

Quicksort

```
template<typename It>
void quicksort(It begin, It end, size_t task_count) {
    if (end - begin <= 1) return;
    if (task_count == 1) {
        quicksort_seq(begin, end);
        return;
    }
        Cutoff -> switch
        to serial version.
```

// use first value as pivot
auto pivot\_it = partition(begin, end, begin);

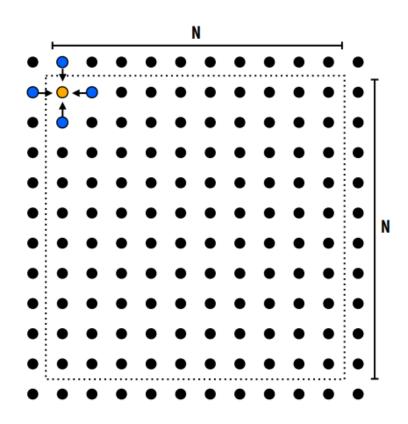
#pragma omp task Create a task for one branch.
quicksort(begin, pivot\_it, task\_count / 2);

// run this branch in the current task
quicksort(pivot\_it + 1, end, task\_count / 2);

Avoid task overhead.

Let's make it a bit harder.

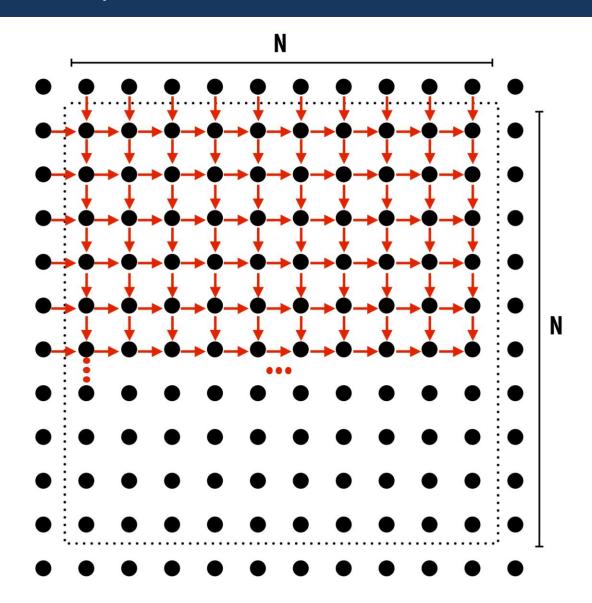
- Quicksort parallelization was easy, as we had no dependencies.
- What if we have dependencies?



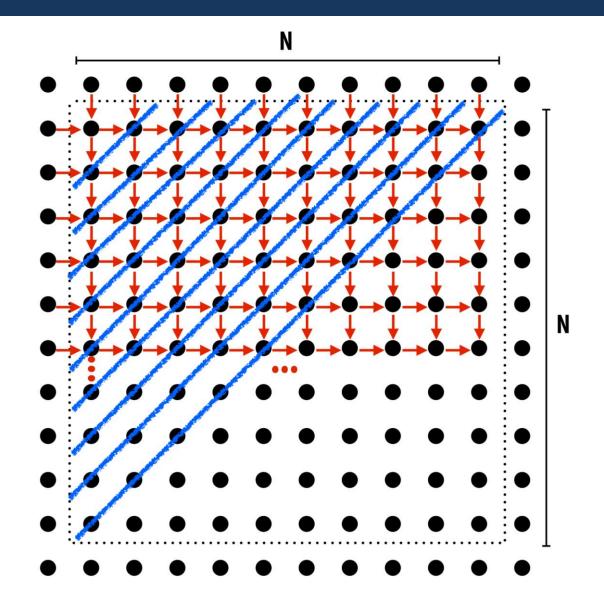
Problem: We have a 2D space containing heat sources and sinks with fixed temperature. Find the stable temperature of each point.

- Simplification: Discretize to 2D grid.
- A[i,j] = 0.2 \* (A[i-1,j] + A[i,j-1] + A[i,j] + A[i+1,j] + A[i,j+1])
- Iteratively compute heat transfer for each point until the system stabilizes, going row by row.
- Note that some of the surrounding points have already been updated, some not.

What are the dependencies in one iteration?

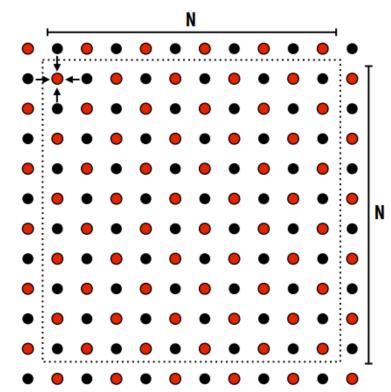


What can we execute in parallel?

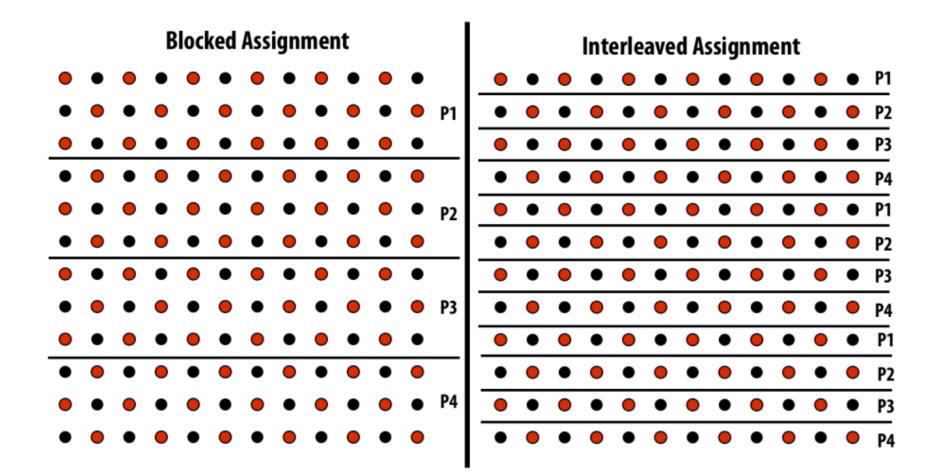


Reformulate the problem.

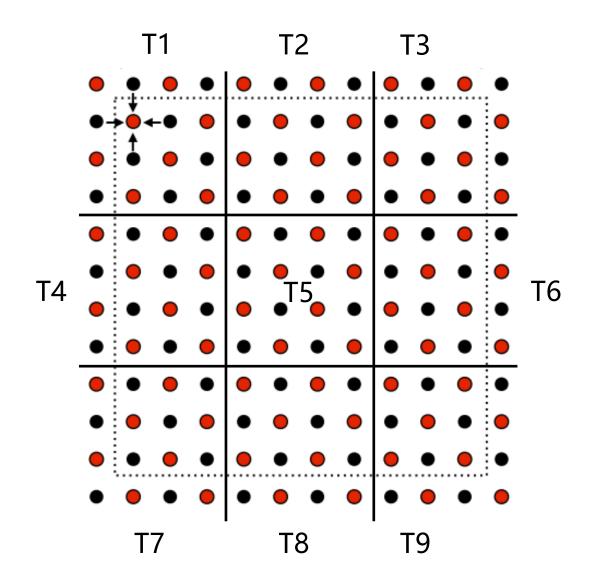
- Parallelization on diagonals needs too much synchronization.
- Idea: Could we change the algorithm to still reach the same result, but make it easier to parallelize?
- We could change iteration order to first update odd nodes, then the even ones.
- Is that correct?
  - = Does it give the same steady state?



How to assign areas?



#### Heat diffusion simulation 2D assignment



More dependencies.

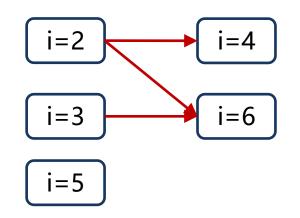
```
std::vector<uint64_t> find_primes_under(uint64_t max_n) {
    auto found_primes = std::vector<uint64_t>();
    auto sieve = std::vector<bool>(max_n, true);
    for (size_t n = 2; n <= std::sqrt(max_n); n++) {</pre>
        if (sieve[n]) {
            found_primes.push_back(n);
            for (size_t mult = n; mult < max_n; mult += n) {</pre>
                 sieve[mult] = false;
            }
        }
    }
    for (size_t n = std::sqrt(max_n); n < max_n; n++) {</pre>
        if (sieve[n]) {
            found_primes.push_back(n);
        }
    }
    return found_primes;
}
```

How to parallelize?

- We could parallelize the outer loop.
  - LOT of duplicated work, since we don't yet know if the number is prime when pruning its multiples.
  - Likely results in frequent false sharing.
  - But the result is correct.
- We could parallelize the inner loop.
  - Quite obviously safe, with minimal sharing.
  - Somewhat high overhead from barriers.
- Can we do something smarter?
- What are the actual dependencies?

What are the dependencies?

- We can start pruning multiples of X when we know that X is prime.
- We know that X is prime when we already pruned all its possible divisors.
- Huh...



What are the dependencies?

- Do we know anything about the structure of primes?
- Yes: If we're pruning multiples of n, we know that everything unpruned under 2\*n is a prime.

- We can safely parallelize batches between powers of 2.
- 2 -> 4 -> 8 -> 16 -> 32 -> 64 -> 128 -> ...

- How to parallelize?
  - 1. Split primes between threads.
    - Each thread picks a prime and prunes its multiples.
  - 2. Split subranges of the sieve between threads.
    - Each thread prunes a range of numbers for all primes.

What are the dependencies?

- Can we make the batches even larger?
- Yes: If we reached sqrt(n) and did not prune n, we know it's a prime!
- We can jump by exponentiation, not just multiplication!
- 2 -> 4 -> 16 -> 256 -> 65535 -> ...