
Parallel and Distributed Computing
(B4B36PDV)

Matěj Kafka, Michal Jakob

kafkamat@fel.cvut.cz

https://pdv.pages.fel.cvut.cz

https://pdv.pages.fel.cvut.cz/


PARALLEL SORTING 
ALGORITHMS

A case study



Parallel sorting algorithms

• Common and well-understood problem…

• …with many interesting solutions.

• You should already know common algorithms from ALG.

• Comparison-based vs non-comparison-based sorting

• We will focus on comparison-based algorithms.

• Good case study for designing parallel algorithms.

• How to directly parallelize simple sorting algorithms?

• How do real-world implementations sort?



Serial quicksort
We already saw this one last week.

template<typename It>
void quicksort(It begin, It end) {

if (end - begin <= 1) {
return;

}

// select a pivot and partition the data around it
auto pivot_it = partition(begin, end);

quicksort(begin, pivot_it);
quicksort(pivot_it + 1, end);

}



Parallel quicksort
We already saw this one last week.

template<typename It>
void quicksort(It begin, It end, size_t task_count) {

if (end - begin <= 1) return;

if (task_count == 1) {
quicksort_seq(begin, end);
return;

}

// select a pivot and partition the data around it
auto pivot_it = partition(begin, end);

#pragma omp task
quicksort(begin, pivot_it, task_count / 2);

// run this branch in the current task
quicksort(pivot_it + 1, end, task_count / 2);

}

Cutoff -> switch 
to serial version.

Create a task for one branch.

Avoid task 
overhead.



Bubble sort
The simplest usable sorting algorithm.

template<typename It>
void bubble_sort(It begin, It end) {

for (end--; end != begin; end--) {
for (auto it = begin; it != end; ++it) {

minmax(*it, *(it + 1));
}

}
}



Parallel bubble sort

• Which steps can be done in parallel?

How to parallelize it?



Odd-even sort

• Which steps can be done in parallel?

• Remember heat diffusion from last lecture.

Bubble sort with a different comparison order.



Odd-even sort
Bubble sort with a different comparison order.

template<typename It>
void odd_even_sort(It begin, It end) {

end--;
auto n = end - begin;

#pragma omp parallel
for (size_t i = 0; i < n; i++) {

#pragma omp for
for (auto it = begin; it < end; it += 2) {

minmax(*it, *(it + 1));
}

#pragma omp for
for (auto it = begin + 1; it < end; it += 2) {

minmax(*it, *(it + 1));
}

}
}



Merge sort
Another divide-and-conquer algorithm.



Parallel merge sort
Recursion? Tasks! (most likely)

• Could we also parallelize the merge?



Parallel merge sort
Bottom-up formulation

We can also implement merge sort as an iterative algorithm 
by starting from the lowest level (merging pairs) and going 
up in powers of two, skipping the "divide" part of the 
recursion.

Can be easily implemented with 2 for loops, we can 
parallelize the inner loop.



Sorting networks

• So far, we parallelized large arrays using CPU threads.

• How to efficiently sort small arrays in parallel?

• CPU threads are too heavy, but we could implement the 
sorting algorithm in hardware (or an FPGA), or with lighter-
weight "threads", e.g., CPU SIMD or GPUs (next lecture).

• We cannot easily branch control flow in hardware!

• Could we avoid branching?

Sorting small arrays quickly

template<typename T>
void minmax(T& v1, T& v2) {

if (v1 > v2) {
std::swap(v1, v2);

}
}

template<typename T>
void minmax(T& v1, T& v2) {

auto min = std::min(v1, v2);
auto max = std::max(v1, v2);
v1 = min;
v2 = max;

}



Sorting networks
Sorting small arrays quickly

Optimal sorting 
network for n=4

Optimal sorting 
network for n=8

Source: https://bertdobbelaere.github.io/sorting_networks.html

https://bertdobbelaere.github.io/sorting_networks.html


Sorting networks

• We get a static tree of operations that's easy to parallelize 
on the small scale.

• Branchless code avoids penalties from branch
misprediction on CPUs.

• Branchless code can be trivially implemented in hardware 
and in SIMD (next lecture).

• We can construct sorting networks for small inputs
by hand or using brute-force.

• What about larger inputs?

Why are they useful?



Bitonic merge

• Let us go back to the idea of parallel merging.

• We have two ascending sequences of numbers.

• Flip the second sequence (one ascending, one descending).

• What if we do parallel min/max between the two?

• The resulting sequences have 2 interesting properties:

• The min sequence contains the lower half of all numbers.

• Both sequences are "bitonic" = there is only a single 
"direction change", otherwise they're monotonic (or a 
cyclic shift of such a sequence).

Branchless way to merge two sorted sequences.



Bitonic merge

• By recursive application of the min/max operation, we can 
convert a bitonic sequence to a sorted sequence.

• Proof is non-trivial, utilizing bitonicity
and the zero-one principle.

• Intuitively, in each round, we
move the values closer to the
correct place, while the bitonic
property ensures that a high
value does not prevent a slightly
lower value from moving to the
upper half (and vice versa).

Branchless way to merge two sorted sequences.

Source: https://commons.wikimedia.org/wiki/File:BitonicSort1.svg

https://en.wikipedia.org/wiki/Sorting_network#Zero-one_principle
https://commons.wikimedia.org/wiki/File:BitonicSort1.svg


Bitonic sort

• A singleton array is trivially sorted. 

• Using bitonic merge, we can combine two sorted sequences 
of the same length into a single sorted sequence.

• -> We just inductively described how to create a sorting 
network for any N = 2𝑥.

An algorithm for constructing larger sorting networks.

Source: https://commons.wikimedia.org/wiki/File:BitonicSort1.svg

https://commons.wikimedia.org/wiki/File:BitonicSort1.svg


Bitonic sort

• Algorithm for creating larger sorting networks.

• Very amenable to parallelization, O(log2N) time complexity 
on sufficiently parallel hardware.

• Great fit for GPUs and SIMD.

Why is it interesting?

Source: https://commons.wikimedia.org/wiki/File:BitonicSort1.svg

https://commons.wikimedia.org/wiki/File:BitonicSort1.svg


SORTING IN THE
REAL WORLD

How does the C++ standard library sort?



Sorting in the real world

• We already saw multiple parallel sorting algorithms.

• And we saw how OpenMP works internally.

• Let us apply both and see how widely-used libraries,
such as the C++ standard library, sort things.

How does the C++ standard library sort?

auto vec = std::vector<uint32_t>{3, 4, 1, 5, 2};

// serial sort
std::sort(vec.begin(), vec.end());

// parallel sort
std::sort(std::execution::par_unseq, vec.begin(), vec.end());



C++ standard libraries

• There are 3 mainstream implementations of the C++ 
standard library:

• libstdc++ (GCC, most common on Linux)

• libc++ (Clang, most common on macOS)

• STL (MSVC, Windows-only)

• The parallel sort implementation in STL is the simplest 
and most readable (and somewhat slower than the other 
two), we'll explore it more in-depth.

• Warning: Stdlib code often looks ugly on first sight, you'll 
get used to it (if you look long enough).

Not just a single C++ standard library.



EXPLORING STD::SORT
IN MICROSOFT'S STL

Coding session 1



SIMD (VECTORIZATION)
Small-scale parallelism



SIMD

• The point of a CPU is to compute things.

• But most of the CPU is loading/storing data, scheduling 
instructions, predicting and handling branches,…

Lighter-weight parallelism

Source: https://nemez.net/die/

https://nemez.net/die/


SIMD

• Could we somehow utilize more of the CPU for useful 
computation?

• Idea: Instructions that apply the same arithmetic 
operation to multiple values -> vectorization.

• SIMD = single instruction, multiple data

• We amortize the overhead of control flow, memory access, 
scheduling,… by only executing those steps once, but 
running multiple arithmetic operations.

Lighter-weight parallelism



SIMD

• Implemented by most architectures as a set of CPU 
instructions that operate on a separate set of registers.

• Typically available for fixed vector widths: 128, 256, 512 bits

Lighter-weight parallelism

; load next block of input
vmovdqu ymm1, [rdi]
vmovdqu ymm2, [rsi]
; multiply vectors
vpmulld ymm3, ymm1, ymm2
; add to accumulator
vpaddd ymm0, ymm0, ymm3
; increment input iterators
; (8 integers, each 4 bytes)
add rdi, 32
add rsi, 32
; decrease remaining count
sub rdx, 8

; load next value
mov eax, [rdi]
mov ebx, [rsi]
; multiply values
mul ecx, eax, ebx
; add to accumulator
add r8d, r8d, ecx
; increment input iterators
; 32bit integer
add rdi, 4
add rsi, 4
; decrease remaining count
sub rdx, 1



Available SIMD operations

• load/store from memory

• fill vector with a scalar value (broadcast)

• basic arithmetic operations, including bitwise ops

• min/max

• shuffling (permuting values in a vector)

• only predefined patterns

• masked operations (e.g., blending)

• comparisons

• …many other, often domain-specific instructions to speed 
up specific computations…

What can we do with CPU vector instructions?



This is where we finished on 2025-03-26.



Use cases for SIMD
Where do you think SIMD could be useful?



Use cases for SIMD

• almost any string manipulation, memcpy,…

• Heavily used in most std::string implementations.

• operations on data structures with continuous storage

• Even trees, if you're clever. 

• matrix and vector operations

• As some of you will see next semester, a lot of things can 
be expressed using matrices.

• image processing (and most other GPU workloads)

• DSP (digital signal processing) 

• sorting numeric values (e.g., bitonic sort)

• game simulations (e.g., Reversi from RPH)

Everywhere…



Vector min/max

Vector min/max with large blocks:

What about smaller blocks? (e.g., pairs)

Example use case (used in sorting networks)

2 5 6 9

1 3 7 8

1 3 6 8

2 5 7 9

min

max

x3 x2 x1 x0

2 5 6 4



Vector min/max

What about smaller blocks? (e.g., pairs)

Example use case (used in sorting networks)

x3 x2 x1 x0

2 5 6 40 0 0 0

x3 x2 x1

0 2 5 60 0 0 0
shift right by 1

zero-extend

trim

compare with the 
original vector x3 x2 x1 x0

2 5 6 4

we need min…

x3 x2 x1

0 2 5 6

x3 x2 x1 x0

0 2 5 4



Vector min/max

What about smaller blocks? (e.g., pairs)

Example use case (used in sorting networks)

We need the minimum…

x3 x2 x1 x0

0 2 5 4

…but only at even positions.
- min(x0, x1) at position 0
- min(x2, x3) at position 2
- …

Use a mask to zero out
useless values.

x3 x2 x1 x0

0 2 0 4

Similarly, find 
maximum and 
store it at odd 
positions.

x3 x2 x1 x0

5 0 6 0

Result is the OR of 
these two vectors.



Using SIMD from C/C++

• We could use inline assembly, but compiler does not
understand the operations and cannot optimize around 
them, which is a major issue.

• Also quite cumbersome to write.

• Compilers provide so-called "intrinsics" – arch-specific 
functions that correspond to specific CPU instructions.

• Compilers also provide types to represent vectors of 
various width and types.

Assembly is somewhat old-school…

__m256 exp_vec(__m256 x) {
__m256 three = _mm256_set1_ps(3.0f);
__m256 addthree = _mm256_add_ps(x, three);
__m256 subthree = _mm256_sub_ps(x, three);
return _mm256_div_ps(

_mm256_add_ps(_mm256_mul_ps(addthree, addthree), three),
_mm256_add_ps(_mm256_mul_ps(subthree, subthree), three)

);
} https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html


Using SIMD from C/C++

• The compiler can also sometimes automatically optimize 
scalar code to use SIMD instructions = "autovectorization".

• Clang is somewhat good at it, GCC and MSVC not so much.

• Not a panacea, often we need to help the compiler by 
rearranging the computation, changing data structures,…

• We need to specify the microarchitecture to compile for, 
defaults are very conservative.

Autovectorization

https://godbolt.org/z/eWf5dEjeP

void multiply_vec(uint32_t multiplier,
std::vector<uint32_t>& vec) {

for (auto& n : vec) {
n = n * multiplier;

}
}

https://godbolt.org/z/eWf5dEjeP


Using SIMD from modern C++

• There is an experimental C++ standard library extension 
that provides cross-platform SIMD vectors.

• std::experimental::simd

• Seems on track to be accepted into C++26. For the
experimental version, you must use quite modern GCC or 
Clang (please update, you'll need it next week).

Intrinsics are not exactly readable.

using vec_f32 = std::experimental::native_simd<float>;

static vec_f32 exp_vec_cpp(vec_f32 x) {
vec_f32 three{3.0f};
vec_f32 x_plus_3 = x + three;
vec_f32 x_minus_3 = x - three;
return (x_plus_3 * x_plus_3 + three)

/ (x_minus_3 * x_minus_3 + three);
}



C++ SIMD example
Vector min/max again

Source: https://commons.wikimedia.org/wiki/File:BitonicSort1.svg

size_t half = N / 2;
for (size_t i = 0; i < half; i += vec_f32::size()) {

vec_f32 low = vec_f32{&data[i], element_aligned};
vec_f32 high = vec_f32{&data[half + i], element_aligned};
min(low, high).copy_to(&data[i], element_aligned);
max(low, high).copy_to(&data[half + i], element_aligned);

}

https://commons.wikimedia.org/wiki/File:BitonicSort1.svg


Using SIMD from modern C++

• Due to being cross-platform, the exposed operations are 
somewhat limited compared to what, e.g., modern x64 
provides, but good-enough for our purposes.

• Note that available SIMD instructions differ a lot between 
different architectures, and even a single architecture (e.g., 
x64, ARM64) provides different SIMD instructions in 
different generations of CPUs (SSE, AVX, AVX2, AVX-512,…).

• We'll discuss more in the next lecture.

• For many performance-sensitive workloads, the SIMD code 
is handwritten for a specific microarchitecture that it will 
run on, with manually optimized instructions to maximize 
throughput and saturate all available ALUs.

• There are many tricks to do common operations quickly, 
mostly out of scope for PDV.

std::experimental::simd


	Slide 1: Parallel and Distributed Computing (B4B36PDV)
	Slide 2: Parallel Sorting Algorithms
	Slide 3: Parallel sorting algorithms
	Slide 4: Serial quicksort
	Slide 5: Parallel quicksort
	Slide 6: Bubble sort
	Slide 7: Parallel bubble sort
	Slide 8: Odd-even sort
	Slide 9: Odd-even sort
	Slide 10: Merge sort
	Slide 11: Parallel merge sort
	Slide 12: Parallel merge sort
	Slide 13: Sorting networks
	Slide 14: Sorting networks
	Slide 15: Sorting networks
	Slide 16: Bitonic merge
	Slide 17: Bitonic merge
	Slide 18: Bitonic sort
	Slide 19: Bitonic sort
	Slide 20: Sorting in the Real World
	Slide 21: Sorting in the real world
	Slide 22: C++ standard libraries
	Slide 23: Exploring std::sort in Microsoft's STL
	Slide 24: SIMD (vectorization)
	Slide 25: SIMD
	Slide 26: SIMD
	Slide 27: SIMD
	Slide 28: Available SIMD operations
	Slide 29
	Slide 30: Use cases for SIMD
	Slide 31: Use cases for SIMD
	Slide 32: Vector min/max
	Slide 33: Vector min/max
	Slide 34: Vector min/max
	Slide 35: Using SIMD from C/C++
	Slide 36: Using SIMD from C/C++
	Slide 37: Using SIMD from modern C++
	Slide 38: C++ SIMD example
	Slide 39: Using SIMD from modern C++

